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Abstract. In this paper we consider the metric approach to the Berry’s transport (geometrical
part of the adiabatic evolution) of any pure or mixed state, for possibly degenerate Hamiltonians.
We emphasize that explicit formulae for the transport of such states need the introduction of
an averaging procedure; in analogy with the classical case this quantum averaging involves
multiplying each energy eigenstate by a different phase and then integrating over these phases.
We show in particular how the transport of non-stationary pure states, rays and density matrices
arise from the minimization of Hilbert, Fubini–Study and Bures averaged distances respectively.

1. Introduction

In this introduction we briefly recall the different approaches to Berry’s phase focusing
on the metric derivation which we develop in this paper. In section 2 we argue that these
approaches have been essentially formulated for stationary states and need to be generalized
for non-stationary pure states and mixed states; by introducing an averaging technique we
provide explicit new expressions for the transport of arbitrary pure states. The main result,
obtained in section 3, concerns the application of this technique to a metric derivation of
the adiabatic Berry’s transport of density operators, using the Bures distance.

Historically, the Berry’s phase and more generally the Berry’s transport, are geometrical
concepts which have emerged from recent reconsiderations of the quantum adiabatic
theorem. As is well known, this theorem describes the evolution of the stationary states of
systems with Hamiltonians,H(X), depending on a set of slowly time-varying parameters
(X(t) ≡ X1(t), X2(t), . . . , Xr(t)). In its original form [1], it asserts that an initial stationary
state remains an eigenstate of the instantaneous Hamiltonian, i.e. it belongs at each time
to the eigensubspaceHE(X(t)) (hereafter simply denotedHE(t)) of the Hilbert space,H,
associated with the energy levelE(X(t)). An important physical consequence is that the
adiabatic evolution does not induce transitions between stationary states of different energies.
The complement given by Berry [2] for a non-degenerate level, and generalized in [3] for the
degenerate case, deals with the evolution inside the subspacesHE(t). It states that an initial
state,9E(0), in HE(0) evolves into the state9E(t) = 9E(t) exp− i

h̄

∫ t
0 E(X(s)) ds of

HE(t) which contains, besides the expected dynamical phase factor, a slowly time-varying
contribution,9E(t), determined by the condition

PE d9E = 0 (1)
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with PE (a shorter notation forPE(X(t))) being the projector ontoHE(t). This condition
amounts to the requirement that the evolved state,9E(t), satisfies the Schrödinger equation
projected onto the eigensubspace associated withE(X(t)) (which, for9E(t), implies the
relationPE ih̄∂t9E(t) = 0 which is equivalent to (1)).

First noticed by Simon in the non-degenerate case (where (1) reduces to〈9E, d9E〉 = 0)
[4], relation (1) defines a unitary geometrical transport, the Berry’s transport, on the fibre
bundle with basis the parameters space and fibre overX the spaceHE(X). If an orthonormal
basis of reference states9(0)

E,r (X(t)) is introduced inHE(t), i.e. if 9E(t) is written as

9E(t) =
∑
r

CE,r (t)9
(0)
E,r (X(t)) (2)

the transport is explicitly given from (1) by the equations

dCE,r = −
∑
s

CE,s〈9(0)
E,r (X), ∂X9

(0)
E,s(X)〉 dX

= i
∑
s

CE,sA
E
r,s(X) dX. (3)

In the non-degenerate case, (3) leads simply to the expressionCE(t) = CE(0) exp iγE(t)
whereγE(t), the Berry’s phase, is the integral of the connection one-form:

dγE = i〈9(0)
E (X), ∂X9

(0)
E (X)〉 dX = i〈9(0)

E (X), dX9
(0)
E (X)〉. (4)

Besides these approaches of the Berry’s transport, a less known metric one also exists
which we consider now. In the non-degenerate case this approach is connected with the
Fubini–Study distance defined in the projective Hilbert space of rays

d2
FS(9̃1, 9̃2) = Infφ1,φ2 ‖91eiφ1 −92eiφ2‖2 (5)

or more precisely with the associated metric

d2
FS(9̃, 9̃ + d9) ≡ Infdφ ‖9 − (9 + d9)ei dφ‖2

= 〈d9, d9〉 − |〈9, d9〉|2. (6)

Indeed, identifying9 with the state9E(t) and (9 + d9) with 9E(t + dt), the gauge
invariance [5] of the metric implies that the transport condition〈9E, d9E〉 = 0 also reads

〈d9E, d9E〉 minimum (7)

(the rays9̃E and ˜(9E + d9E) being fixed). In other words, the transport simply associates
to any vector state of the raỹ9E(t) and the state of the raỹ9E(t + dt) which is the closest
to it.

A more general formalism, to which we refer below, has recently been developed by
Uhlmann [6] and Hubner [7]. LetB2(H) be the space of (Hilbert–Schmidt) linear operators,
W , fromH to H such that:

WW † = ρ Tr ρ <∞. (8)

Then, the spaceB1(H)+ of positive trace class operators,ρ, can be considered as the basis
of a fibre bundle, with fibre overρ the set of operatorsρ

1
2U (sinceW in (8) is defined

modulo the right action of a unitary operator U). From the distance onB2(H)
d2
HS(W1,W2) = Tr((W1−W2)(W1−W2)

†) (9)

which is analogous to the distance d2(91, 92) = ‖91 − 92‖2 between vector states, one
can define a distance inB1(H)+

d2
B(ρ1, ρ2) = InfU1,U2 Tr((ρ

1
2

1U1− ρ
1
2

2U2)(ρ
1
2

1U1− ρ
1
2

2U2)
†) (10)
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which generalizes the Fubini–Study distance (5). This distance is nothing but the Bures
distance initially introduced in the more general framework of normal states of Von Neumann
algebras [8]. Its associated metric

d2
B(ρ, ρ + dρ) = InfdU Tr(dW dW †) with dW = d(ρ

1
2 )+ ρ 1

2 dU (11)

which generalizes (6), can be considered as the most natural one between density matrices.
Then, in analogy with (7) which characterizes the Berry transport9 → 9 + d9 of vector
states, one can define a transportW → W + dW , named by Uhlman ‘parallel transport
along density operators’, by the condition:

d2
HS(W,W + dW) = Tr(dW dW †) minimum. (12)

(ρ andρ+dρ being fixed, this condition specifies now dU in the expression dW = ρ 1
2 dU .)

Writing condition (12) under the equivalent form

W † dW Hermitian (13)

Uhlman was able to recover the Berry’s transport (3) (PE d9E,r = 0) of an orthonormal
basis {9E,r}, in the degenerate case, by choosingW = ∑

r |9E,r〉〈r| where {|r〉} is an
arbitrary fixed orthonormal basis inH [6]. One of the results of section 2 will be to provide
a more natural metric derivation of this transport. To end this introduction, we stress the
fact that condition (12) does not define a transport of density matrices, transport is the main
purpose of this paper.

2. Berry’s transport and averaging generalized

The Berry’s phase for individual stationary states, besides its mathematical interest, has also
proved itself to be fruitful from an experimental point of view [9]. However, this interest
is not limited to considerations about stationary states as illustrated by the two following
examples. The first one, of a theoretical nature, deals with the semiclassical relationship
∂γn
∂I
= − 1

h̄
θI between the Berry’s phaseγn (the principal quantum number,n, labels the

energy level) and its classical counterpart, for an integrable Hamiltonian, the Hannay’s
angleθI (the actionI = nh̄ labels the trajectory in phase space) [10]. A simple quantum
way to derive this relationship consists of transport ‘action-angle’ coherent states (or better
rays), which have been shown to be the adapted tools to describe points in the classical
phase space with action angle coordinates [11]. Let these states|I, θ,X〉 be defined, in the
classical limit, by

|I, θ,X〉 =
∑
n'I/h̄
|Cn|einθ |9(0)

n (X)〉 (14)

the sum overn being ‘peaked’ (1n ' (Ih̄−1)
1
2 ) around the value given by the

correspondence principle. Then it is easy to verify that, up to a global phase factor,
the change9(0)

n (X(0)) → eiγn(t)9(0)
n (X(t)) of the stationary states induces the change

|I, θ,X(0)〉 → |I, θ+θI (t),X(t)〉 of the coherent states. However, this change (Hannay’s
transport) of the coherent states, which is induced by the Berry’s transport of stationary
states, does not correspond to conditions such as〈9, d9〉 = 0 or 〈d9, d9〉 minimum:
these conditions need to be modified for non-stationary states. The second example, of a
practical nature, deals with experiments such as those performed by Bitter and Dubbers
[12] where one measures the change in the polarization of slow neutrons propagating in
an inhomogeneous static magnetic field. In such experiments one studies the adiabatic
evolution of density (polarization) matrices. Although it is clearly understood that this
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evolution is the one induced by the evolution of the individual stationary states there is
also, in this case, the need for a direct definition of the Berry’s transport. As we shall see
this definition requires a notion of averaging. We now define this notion and apply it to
the transport of pure states (formulae (17)–(19)), postponing the case of density matrices to
section 3.

Averaging is a concept which lies at the basis of the demonstration of the classical
adiabatic theorem [13] but which is, surprisingly, rarely evocated in the quantum case.
Quantum averaging concerns the phase of the stationary states in the same way as the
classical one concerns the angle variable on trajectories of fixed action in phase space [14].
Technically, the adiabatic average,F , of any functional,F , of the reference stationary states
9
(0)
E,r (X(t)) is defined by:

F =
∫ 2π

0

∫ 2π

0
. . .

∫ 2π

0
F({eiαE9

(0)
E,r (X(t))})5E

dαE
2π

. (15)

It is obtained by multiplying each reference state by a phase factor associated with the
corresponding energy level (possibly degenerated) and by integrating over these phases
{αE} (the same for allr). If F depends on an arbitrary state9 it is understood in (15) that
one decomposes9 as

9(t) =
∑
E

9E(t) with 9E(t) =
∑
r

CE,r (t)9
(0)
E,r (X(t)) (16)

before taking the average. As a consequence the coefficientsCE,r = 〈9(0)
E,r , 9〉 must be

considered as unaffected by the change of phases. In contrast, a variation d9 (‘d of 9 ’) is
affected by this change.

As a first application of the averaging procedure it is easy to verify the equality
〈8, d9〉 = ∑

E〈8E, d9E〉 for any two vectors,8 and9, in the Hilbert spaceH. This
allows us to specify the Berry’s transport,PE d9E = 0 for all E, of an arbitrary pure state,
9, by the unique condition (generalization of (1)):

〈8, d9〉 = 0 ∀8 ∈ H. (17)

This condition infers that, on average, d9 is orthogonal to any vector inH.
A second application of the averaging procedure is the derivation of the Berry’s transport

from the extremum principle:

δ

[ ∫
〈9, d9〉

]
= 0

(
d9 = ∂9

∂t
dt

)
. (18)

Indeed, using decomposition (16) and differentiating〈9, d9〉 with respect to the complex
conjugate coefficients,C∗E,r , it is easy to recover (17) from (18). This result is a direct
consequence of the fact that, in the quantum case as in the classical one, the adiabatic
hypothesis consists of changing the LagrangianL (L = 〈9, (ih̄∂t−H)9〉 for the Schr̈odinger
equation) by its averageL [14].

Finally, we combine the averaging procedure with the metric approach and show that
the condition

〈d9, d9〉 minimum (19)

is a simple metric way to define the Berry’s transport for arbitrary pure vector states. For
this demonstration, as for those which lead, in section 3, to the transport of rays and density
matrices, it is useful to separate, into the total variation, d9, of a state, the contribution
dX9 =

∑
E,r CE,r dX9

(0)
E,r (X) associated with a given variation, dX, of the parameters

from the contribution dC9 =
∑

E,r dCE,r 9
(0)
E,r (X) associated with the variations{dCE,r}
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of the components of9 onto the moving basis (the transport being specified, in the metric
approach, by the variation dC9 which, for a given dX9, satisfies condition (19)). One has:

d9 = dX9 + dC9 with (I − PE) dC9E = 0. (20)

Then, from the equality

〈d9, d9〉 =
∑
E

〈d9E, d9E〉

=
∑
E

‖PE d9E‖2+ ‖(I − PE) dX9E‖2 (21)

and the remark that the last term on the r.h.s. of (21) is independent of the variations
{dCE,r}, one verfies that the minimum of (21) is obtained when the transport conditions (1),
PE d9E = 0 for all E, are satisfied.

3. Berry’s transport of rays and density matrices

As the Fubini–Study metric (6) is the extension to rays of the Hilbert metric〈d9, d9〉 for
vector states, let us average it and examine the condition

〈d9, d9〉 − |〈9, d9〉|2 minimum. (22)

We now show that it leads to the transport of rays and therefore generalizes (19). (We keep
the possibility that some eigenspaces,HE , are degenerate.) An important remark is that,
because each variation dC9E belongs to the corresponding eigensubspaceHE , the quantity
〈9, dC9〉 is equal to its average〈9, dC9〉. So one can write:

〈9, d9〉 − 〈9, d9〉 = 〈9, dX9〉 − 〈9, dX9〉. (23)

Then, considering each side of (23) as random variables (functions of the random phases
{αE} entering into the averaging procedure) one gets the equality of their variances:

|〈9, d9〉|2 − |〈9, d9〉 |2 = |〈9, dX9〉|2− |〈9, dX9〉|2. (24)

Since the r.h.s. of (24) is independent of the variations{dCE,r} it follows that |〈9, d9〉|2 can
be replaced by|〈9, d9〉|2 in (22). The quantity to minimize thus reads

∑
E ‖PE d9E‖2 −

|∑E〈9E, d9E〉|2. According to the Schwartz inequality, the minimum is obtained when
PE d9E = dλ9E (for all E). One can verify that the normalization of9 implies that dλ is
purely imaginary. Therefore condition (22) leads to:

PE d9E = i dϕ9E. (25)

One obtains the Berry’s transport of vector states up to a global (the same for allE and
r) phase factor, i.e. (22) actually defines the Berry’s transport of rays. (When the states
9 are the action-angle states (14) relation (22) provides a metric transport of the classical
trajectories in phase space [15].)

The generalization of this transport to statistical mixtures of quantum states requires a
notion of distance between density operators. As explained in the introduction, the natural
one is the Bures distance (10) (although the distance Tr(ρ2− ρ1)

2 has also been considered
in this context [16]). An explicit expression for the associated metric (11) was first obtained
by Hubner [7] by means of the calculation ofdB(ρ, ρ + t dρ) up to second order int and
then by Braunstein and Caves [17] using arguments of a statistical nature. This expression,



2494 M Maamache et al

also obtained in the appendix from a direct determination of the infimum by means of
Lagrange multipliers, reads

d2
B(ρ, ρ + dρ) = 1

2

∑
λα+λβ 6=0

|〈8α|dρ|8β〉|2
λα + λβ (26)

where {8α} is a basis of eigenvectors ofρ and {λα} is the associated spectrum. In the
particular case of a projectorρ = P9 = |9〉〈9|, identifying the pure state,9, with the
eigenstate80, (26) reads

∑
α 6=0 |〈8α, d9〉|2 = 〈d9, (I−P9) d9〉 = 〈d9, d9〉−|〈9, d9〉|2

and the Bures metric reduces to the Fubini–Study one (6) (as expected sinceρ = P9 is
another way to specify the quantum ray9̃). Let us now consider the transport of density
operators defined by the condition

d2
B(ρ, ρ + dρ) minimum (27)

which generalizes (19) and (22). In order to make this condition tractable, one expresses
ρ(t) in the basis of reference states9(0)

E,r (X(t))

ρ(t) =
∑
E,r

∑
F,s

ρ(E,r)(F,s)(t)|9(0)
E,r (X(t))〉〈9(0)

F,s(X(t))| (28)

and separates as above, in the total variation dρ of the density matrix, the contributions
associated respectively with the variations{d(ρ(E,r)(F,s))} of the coefficients and with those
dX of the parameters, i.e. one writes

dρ = dCρ + dXρ (29)

with:

dCρ =
∑
E,r

∑
F,s

d(ρ(E,r)(F,s)) |9(0)
E,r (X)〉〈9(0)

F,s(X)|

dXρ =
∑
E,r

∑
F,s

ρ(E,r)(F,s)(|dX9(0)
E,r (X)〉〈9(0)

F,s(X)| + |9(0)
E,r (X)〉〈dX9(0)

F,s(X)|).
(30)

Then, given a variation, dXρ, of ρ, the geometrical transport involves determining the
corresponding variation dCρ. At this point, it is important to note that, in the same way as
the coefficientsCE,r(t) = 〈9(0)

E,r (X(t)), 9〉 of the decomposition (16) are not affected by the

averaging procedure, quantities such as〈9(0)
F,s(X(t)),8β〉 which appear in the expression

of 〈8α|dρ|8β〉 must not be averaged. Consequently〈8α|dCρ|8β〉 is equal to its average
〈8α|dCρ|8β〉. Then a derivation similar at all points to the one used to obtain equation (24)
leads to the following expression for the variance of the matrix element〈8α|dρ|8β〉:
|〈8α|dρ|8β〉|2− |〈8α|dρ|8β〉|2 = |〈8α|dXρ|8β〉|2− |〈8α|dXρ|8β〉|2. (31)

It follows that the terms|〈8α|dρ|8β〉|2 can be replaced by|〈8α|dρ|8β〉|2 in (27). The
condition of minimum is then clearly realized when:

〈8α|dρ|8β〉 = 0 ∀α, β. (32)

This relation, which generalizes (17), infers that on average (and in the weak operator
topology) the variation dρ is equal to zero. It explicitly reads:∑
E,r

∑
F,s

〈8α,9
(0)
E,r (X)〉〈9(0)

F,s(X),8β〉
[

d(ρ(E,r)(F,s))

+
∑
u

[〈9(0)
E,r (X), dX9

(0)
E,u(X)〉ρ(E,u)(F,s)

+〈dX9(0)
F,u(X),9

(0)
F,s(X)〉ρ(E,r)(F,u)]

]
= 0. (33)
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As this equality is true for allα andβ one deduces that the d(ρ(E,r)(F,s))’s which minimize

d2
B(ρ, ρ + dρ) are such that:

d(ρ(E,r)(F,s)) = i
∑
u

[AE
ru(X)ρ(E,u)(F,s) − ρ(E,r)(F,u)AF

us(X)] dX. (34)

This formula for the elements of density matrices generalizes formula (3) for the components
of pure states. It infers that the Berry’s transport of density matrices is the one induced by
the transport of stationary states. Indeed, (34) implies that the matrix elements would be
unchanged if they were taken in the basis of the transported stationary states (in place of
the basis of the reference stationary states). For example, in the non-degenerate case (34)
reduces to

d(ρEF ) = iρEF (dγE − dγF ) (35)

and the corresponding transport associates to the density matrixρ(0) = ∑
EF ρEF (0)

|9(0)
E (X(0))〉〈9(0)

F (X(0))| the density matrix:

ρ(t) =
∑
EF

ρEF (0)e
i(γE(t)−γF (t))|9(0)

E (X(t))〉〈9(0)
F (X(t))|. (36)

Appendix

The problem now involves finding the infimum:

InfdU Tr(dW dW †) = d2
B(ρ, ρ + dρ) with dW = d(ρ

1
2 )+ ρ 1

2 dU. (A.1)

In the basis of their eigenvectors{8α}, ρ andρ
1
2 read as

ρ =
∑
α

λα|8α〉〈8α| ρ
1
2 =

∑
α

µα|8α〉〈8α| (λα = µ2
α) (A.2)

and dW takes the form

dW =
∑
α

dµα|8α〉〈8α| + µα|d8α〉〈8α| + µα|8α〉〈d8α| + µα|8α〉〈8α| dU. (A.3)

Let us denote〈d8α| + 〈8α|dU def= 〈δ8α|; the perturbation dU being a unitary one
(dU + dU † = 0), the{〈δ8α|}’s are submitted to the constraints:

〈δ8α,8β〉 + 〈8α, δ8β〉 = 0 ∀α, β. (A.4)

The Bures metric then reads:

d2
B(ρ, ρ + dρ) = Inf{〈δ8α |} Tr

(∑
αβ

((dµα|8α〉〈8α| + µα|d8α〉〈8α|

+µα|8α〉〈δ8α|)(dµβ |8β〉〈8β | + µβ |8β〉〈d8β | + µβ |δ8β〉〈8β |)
+µαµβlαβ(〈δ8α,8β〉 + 〈8α, δ8β〉))

)
. (A.5)

In this relation the Lagrange multipliers,lαβ (= l∗βα), ensure that constraints (A.4) are
taken into account (their product byµαµβ being introduced there only for calculational
convenience). The infimum of the trace is obtained for variations{|δ8α〉}’s such that:

µα|δ8α〉 + dµα|8α〉 +
∑
β

µβ(〈d8β,8α〉 + lαβ)|8β〉 = 0. (A.6)
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Then, considering linear combinations of the relations deduced from (A.6) by projection
onto the basis vectors{8γ } and taking into account constraints (A.4) and the Hermitian
symmetry of the{lαβ}’s, one gets the Lagrange multipliers:

lαα = −1

2

dλα
λα

lαβ = λα − λβ
λα + λβ 〈d8β,8α〉 α 6= β. (A.7)

Substituting (A.6) and (A.7) into (A.5), the Bures metric reads:

d2
B(ρ, ρ + dρ) = 1

2

(∑
α

(dλα)2

2λα
+
∑
α 6=β
|〈8α, d8β〉|2 (λβ − λα)

2

λβ + λα

)
(A.8)

or, by using (A.2),

d2
B(ρ, ρ + dρ) = 1

2

∑
αβ

|〈8α|dρ|8β〉|2
λβ + λα (A.9)

which is expression (26) given in section 3.
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